New publication in PRX by experimental team

Dr. Forn-Díaz from the Quantic group has participated in a collaboration together with IQC researchers in Waterloo (Canada) where a for the first time spontaneous triple photon downconversion was observed in a superconducting circuit. The article was published in PRX.

Superconducting circuit used to demonstrate triple photon downconversion. The circuit consists of a lambda/4 resonator terminated with a DC-SQUID.

Here is a public summary of the achievement:

For over 30 years, spontaneous parametric down-conversion (SPDC) has been a workhorse for quantum optics. By splitting one “pump photon” into two daughter photons, SPDC has had a crucial role in fundamental tests of quantum theory as well as many applications in quantum information processing. From the early days, researchers have explored splitting the pump photon into three photons (as a possible resource in quantum computation, for example), but it has proven extremely difficult to realize experimentally—until now. Here, we report on an implementation of three-photon SPDC in the microwave domain.

To split one microwave photon into three daughter photons, we use a flux-pumped, superconducting parametric resonator. Our triplet source is bright, producing a propagating photon flux comparable to ordinary two-photon SPDC. We clearly see strong three-photon correlations in the output photons, even in the absence of normal two-photon correlations. The symmetry properties of these correlations allow us to “fingerprint” how the photons were created, clearly demonstrating little contamination from typical SPDC processes.

These results form the basis of an exciting new paradigm of three-photon quantum optics. One can only hope that this new paradigm will be as successful as two-photon quantum optics.

(a) Phase space distribution of the triple photon downconversion. The non-gaussian shape of the distribution is a hallmark of this new effect. (b) same as (a) but at single photon level. (c) Skewness of the distribution, explicitly showing its non-gaussianity.